irreducible polynomial

美 [ˌɪrɪˈduːsəbl ˌpɑli'noʊmiəl]英 [ˌɪrɪˈdjuːsəbl ˌpɒli'nəʊmiəl]
  • 网络不可约多项式;既约多项式
irreducible polynomialirreducible polynomial
  1. The algorithm applied the characteristic of the small second item 's degree of irreducible polynomial in characteristic 2 finite field .

    该算法利用了特征为2的有限域中的不可约多项式第二项次数较小的特点。

  2. In dual galois field n irreducible polynomial

    二元有限域上的n次不可约多项式

  3. The criterion of the irreducible polynomial of integer coefficient

    整系数多项式不可约的一个判别法

  4. A note of irreducible polynomial on Q

    关于Q上不可约多项式的一个注记

  5. New algorithm for spectral mixture analysis based on Fisher discriminant analysis : evidence from laboratory experiment judgement method of irreducible polynomial in two variables

    二元二次多项式可在实数范围内分解因式的判别法一种新的基于Fisher判别的混合像元分解算法:室内控制实验结果分析

  6. Irreducible Polynomial of Integral Coefficient

    关于整系数不可约多项式

  7. RECOGNITION OF β - HAIRPIN MOTIFS IN PROTEINS BY USING QUADRATIC DISCRIMINANT Judgement Method of Irreducible Polynomial in Two Variables

    用二次判别方法识别蛋白质β-发夹模体有理数域上二元不可约多项式的判别

  8. A method to calculate the Galois group of an irreducible polynomial of degree 5 in Q [ x ] is given .

    本文给出了Q[x]上5次不可约多项式的伽罗华群的一种计算方法。

  9. Judgement Method of Irreducible Polynomial in Two Variables a judgment or ruling by the people 's court of second instance is one of final instance .

    有理数域上二元不可约多项式的判别第二审人民法院的判决、裁定,是终审的判决、裁定。

  10. This paper offers several theorems on judging irreducible polynomial of integral coefficient , which has more generality than those given out in the article ( 1 ) .

    本文给出几个判断整系数不可约多项式的定理,比文[1]给出的定理更具有一般性。

  11. This article according to in the galois field n irreducible polynomial some nature , further has carried on the introduction and the proof to in dual galois field n irreducible polynomial several nature .

    本文根据有限域Fq上n次不可约多项式的一些性质,进一步对二元有限域上的n次不可约多项式的几个性质进行了引入及证明。

  12. In this paper , we present a link between the representation of a root of a basic irreducible polynomial f ( x ) over Galois ring and its order , and derive two algebraic discriminants respectively for primitive polynomials and sub primitive polynomials .

    本文给出Galois环R上的基本不可约多项式f(x)的根的具体表达式和其阶的联系;